Table 2. Geometry of the hydrogen bonds (e.s.d.'s in parentheses)

It is assumed that e.s.d.'s for H atoms in unrefined positions are ten times those of the atoms to which are attached.

| $D-\mathrm{H} \cdots A$ |
| :--- | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}D-\mathrm{H} \\

(\AA)\end{array} $$
\begin{array}{c}\mathrm{H} \cdots A \\
(\AA)\end{array}
$$ \quad $$
\begin{array}{c}D \cdots A \\
(\AA)\end{array}
$$ \quad $$
\begin{array}{c}\angle D-\mathrm{H} \cdots A \\
\left({ }^{( }\right)\end{array}
$$\right)\)

Symmetry code: (i) $-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (ii) $1-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (iii) $1+x$, $-\frac{1}{2}-y, \frac{1}{2}+z$; (iv) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$; (v) $x,-1+y, z$; (vi) $1-x,-1-y$, $1-z$.
puckering of the aromatic rings under the influence of hydrogen bonds. Benzimidazolium cations form stacked columns extending along the $y$ axis. Short van der Waals contacts within both crystallographically independent columns are shown in Fig. 2. Four cationic columns surround each polymeric chain, forming a net of hydrogen bonds. Their geometry with calculated H -atom positions is illustrated in Table 2. The $\mathrm{H}(5)$ atom forms inequivalent bifurcated hydrogen bonds $\mathrm{N}(1)-\mathrm{H}(5) \because \mathrm{Cl}\left(1^{\mathrm{i}}\right) \mathrm{Co} 2.21$ (3) and 2.61 (3) $\AA$. The
$\mathrm{H}(12)$ atom is in the field of three $\mathrm{Cl}^{-}$ions with distances $\quad \mathrm{H}(12)-\mathrm{Cl}\left(2^{\text {ii }}\right) \quad 2.63(3), \quad \mathrm{H}(12)-\mathrm{Cl}\left(1^{\text {iii }}\right)$ 2.77 (3) and $\mathrm{H}(12)-\mathrm{Cl}\left(1^{\text {iv }}\right) 2.62$ (3) $\AA$. The shortest $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond is 2.15 (3) $\AA$. $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds of 2.54 (3), 2.63 (3) and 2.86 (4) $\AA$ were observed. Symmetry codes are given in Table 2.
In order to explain the mechanism of reversible thermochromic properties of the crystals, a study of the structure of the orange form is planned.

This research was supported by Problem RP.11.10.

## References

Bukowska-Strzyżewska, M., Tosik, A., Glowiak, T. \& Wnȩk, J. (1985). Acta Cryst. C41, 1184-1186.

Davies, G. \& El-Sayed, M. A. (1983). Inorg. Chem. 22, 1257-1266.
Freeman, H. C., Huq, F., Rosalky, J. M. \& Faylar, I. F. (1975). Acta Cryst. B31, 2833-2837.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht, The Netherlands.)
Lohr, L. L. \& Lipscomb, W. N. (1963). Inorg. Chem. 2, $911-921$.
Solomon, E. I., Hare, J. W., Dodey, D. M., Dawson, J. H., Stephens, P. J. \& Gray, H. B. (1980). J. Am. Chem. Soc. 102, 168-178.
Syntex (1976). XTL/XTLE Structure Determination System. Syntex Analytical Instruments, Cupertino, California, USA.
Wherland, S. \& Gray, H. B. (1977). Editors. Biological A spects of Inorganic Chemistry. New York: John Wiley.
Willett, R. D. \& Geiser, U. (1984). Croat. Chem. Acta, 57, 737-747.
Willett, R. D. \& Landee, C. P. (1981). J. Appl. Phys. 52, 2004-2009.

Acta Cryst. (1987). C43, 2293-2295

# Structure of Disodium Ethylenebisdithiocarbamate Hexahydrate 

By Viktor Vrábel, Štefan Gergely, Ján Lokaj, Eleonóra Kellö and Ján Garaj<br>Department of Analytical Chemistry, Faculty of Chemical Technology, Slovak Technical University, Jánska 1, 81237 Bratislava, Czechoslovakia

(Received 7 January 1986; accepted 29 July 1987)


#### Abstract

Na}_{2}\left[\mathrm{~S}_{2} \mathrm{CNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{HNCS}_{2}\right] .6 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=\) 364.4, triclinic, $P \overline{1}, a=5.781$ (4), $b=7.237$ (7), $c$ $=10.063$ (12) $\AA, \quad \alpha=88.50(9), \quad \beta=81.60(8), \quad \gamma=$ 74.24 (7) $^{\circ}, \quad V=400.8$ (7) $\AA^{3}, Z=1, D_{m}=1.51, D_{x}$ $=1.51 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $0.6 \mathrm{~mm}^{-1}, F(000)=190, T=295 \mathrm{~K}, R=0.038$ for 1308 observed reflections. The geometry about $\mathrm{Na}^{+}$is distorted octahedral, consisting of five water molecules and one $S$ atom from the organic ligand. Four bidentate water molecules form bridging units between two $\mathrm{Na}^{+}$ cations on both sides of the organic anion and thus


form an infinite chain structure. The ethylenebisdithiocarbamate ion acts as a bidentate ligand; each S atom is an acceptor of three hydrogen bonds.

Introduction. In complexes containing the $R_{2} \mathrm{NCS}_{2}^{-}$ ligand, the geometry of the $>\mathrm{NCS}_{2}$ moiety is dependent on the substituents $R_{2}$ as well as the actual coordination environment. It has previously been shown that for sodium dithiocarbamates, $\mathrm{Na}\left[\mathrm{S}_{2} \mathrm{CN} R_{2}\right] \cdot n \mathrm{H}_{2} \mathrm{O}$, there is a strong correlation between the ligand bite and the bulkiness of the substituents $R$ (Ymen, 1983). Although
© 1987 Internatic 1 Union of Crystallography

Table 1. Final atomic coordinates with e.s.d.'s in parentheses and equivalent isotropic thermal parameters

| $U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{\boldsymbol{j}}$ |  |  |  |  |
| :--- | ---: | ---: | ---: | :---: |
|  | $\boldsymbol{x}$ |  | $\boldsymbol{z}$ | $U_{\mathrm{eq}}\left(\AA^{2}\right)$ |
| Na | $-0.2642(2)$ | $0.4470(2)$ | $0.0915(1)$ | $0.0403(8)$ |
| $\mathrm{Sa}(1)$ | $0.0787(1)$ | $0.0679(1)$ | $0.1664(1)$ | $0.0329(5)$ |
| $\mathrm{S}(2)$ | $0.0748(1)$ | $0.3321(1)$ | $0.3929(1)$ | $0.0349(5)$ |
| $\mathrm{O}(1)$ | $-0.5087(4)$ | $0.2719(3)$ | $0.0084(3)$ | $0.0420(16)$ |
| $\mathrm{O}(2)$ | $0.0288(4)$ | $0.6143(4)$ | $0.1329(2)$ | $0.0443(17)$ |
| $\mathrm{O}(3)$ | $-0.4743(5)$ | $0.5376(3)$ | $0.3147(3)$ | $0.0443(16)$ |
| N | $0.2991(4)$ | $-0.0368(3)$ | $0.3781(2)$ | $0.0327(15)$ |
| $\mathrm{C}(1)$ | $0.1641(5)$ | $0.1097(4)$ | $0.3174(3)$ | $0.0274(16)$ |
| $\mathrm{C}(2)$ | $0.3804(6)$ | $-0.0276(5)$ | $0.5077(3)$ | $0.0348(19)$ |

Table 2. Selected distances $(\AA)$, bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

| The coordination polyhedron |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{Na}-\mathrm{S}(1)$ | 3.066 (1) | $\mathrm{Na}-\mathrm{O}(3)$ | 2.407 (3) |
| $\mathrm{Na}-\mathrm{O}(1)$ | $2 \cdot 382$ (3) | $\mathrm{Na}-\mathrm{O}\left(1^{\text {i }}\right.$ ) | 2.388 (3) |
| $\mathrm{Na}-\mathrm{O}$ (2) | 2.420 (3) | $\mathrm{Na}-\mathrm{O}\left(2^{\text {ii }}\right)$ | 2.445 (2) |
| $\mathrm{S}(1)-\mathrm{Na}-\mathrm{O}(1)$ | 89.6 (1) | $\mathrm{O}(1)-\mathrm{Na}-\mathrm{O}\left(1^{\text {i }}\right.$ ) | 88.5 (1) |
| $\mathrm{S}(1)-\mathrm{Na}-\mathrm{O}(2)$ | 89.7 (1) | $\mathrm{O}(1)-\mathrm{Na}-\mathrm{O}\left({ }^{\text {iii) }}\right.$ ) | 83.9 (1) |
| $\mathrm{S}(1)-\mathrm{Na}-\mathrm{O}(3)$ | 96.9 (1) | $\mathrm{O}(2)-\mathrm{Na}-\mathrm{O}(3)$ | 88.7 (1) |
| $\mathrm{S}(1)-\mathrm{Na}-\mathrm{O}\left(1^{\prime}\right)$ | $169 \cdot 3$ (1) | $\mathrm{O}(2)-\mathrm{Na}-\mathrm{O}\left(1^{\text {i }}\right.$ ) | $90 \cdot 1$ (1) |
| $\mathrm{S}(1)-\mathrm{Na}-\mathrm{O}\left(2^{\prime \prime}\right)$ | 85.3 (1) | $\mathrm{O}(2)-\mathrm{Na}-\mathrm{O}\left(2^{\text {i }}\right.$ ) | 85.0 (1) |
| $\mathrm{O}(1)-\mathrm{Na}-\mathrm{O}(2)$ | 168.9 (1) | $\mathrm{O}(3)-\mathrm{Na}-\mathrm{O}\left(1^{\prime}\right)$ | 93.8 (1) |
| $\mathrm{O}(1)-\mathrm{Na}-\mathrm{O}(3)$ | 102.4 (1) | $\mathrm{O}(3)-\mathrm{Na}-\mathrm{O}\left(2^{\prime \prime}\right)$ | 173.3 (1) |
| The ethylenebisdithiocarbamate ligand |  |  |  |
| $\mathrm{S}(1)-\mathrm{C}(1)$ | 1.722 (3) | $\mathrm{C}(1)-\mathrm{N}$ | 1.328 (3) |
| $S(2)-C(1)$ | 1.712 (3) | $\mathrm{C}(2)-\mathrm{N}$ | 1.458 (4) |
| $S(1) \cdots S(2)$ | 3.007 (1) | $\mathrm{C}(2)-\mathrm{C}\left(2^{\text {iii }}\right)$ | 1.527 (6) |
| $\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{S}(2)$ | 122.2 (2) | $\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(2)$ | 125.6 (3) |
| $\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}$ | 118.6 (2) | $\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{Na}$ | $106 \cdot 3$ (1) |
| $\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{N}$ | 119.2 (2) | $\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(2)$ | -178.0 (2) |
| $\mathrm{N}-\mathrm{C}(2)-\mathrm{C}\left(2^{\text {ill }}\right)$ | 111.5 (3) | $\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(2)-\mathrm{C}\left(2^{\text {ill }}\right)$ | -87.4 (4) |
| The hydrogen bonds |  |  |  |
| $\mathrm{S}(1) \cdots \mathrm{O}\left(1^{\text {lv }}\right.$ ) | $3 \cdot 309$ (3) | S(2) $\cdots \mathrm{O}(2)$ | $3 \cdot 273$ (2) |
| $\mathrm{S}(1) \cdots \mathrm{O}\left(1^{v}\right)$ | $3 \cdot 329$ (3) | $\mathrm{S}(2) \cdots \mathrm{O}\left(3^{\prime \prime}\right)$ | 3.327 (3) |
| $\mathrm{S}(1) \cdots \mathrm{O}\left(2^{v}\right)$ | $3 \cdot 402$ (3) | $\mathrm{S}(2) \cdots \mathrm{O}(3)$ | 3.318 (3) |
| $\mathrm{O}(3) \cdots{ }^{\text {vif }}$ | $3 \cdot 046$ (3) |  |  |

$\mathrm{O}-\mathrm{H}$ range: $0.727(4 \mathrm{C})-0.957$ (31) $\AA$.
Symmetry code: (i) $-1-x, 1-y,-z$; (ii) $-x, 1-y,-z$; (iii) $1-x,-y, 1-z$; (iv) $-x,-y,-z$; (v) $x+1, y, z$; (vi) $x, y-1, z$; (vii) $x-1, y+1, z$.
the crystal structures of four $\mathrm{Na}(\mathrm{dtc}) . n \mathrm{H}_{2} \mathrm{O}$ complexes have been determined: $\mathrm{Na}\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right] .3 \mathrm{H}_{2} \mathrm{O}$ (Colapietro, Domenicano \& Vaciago, 1968); $\mathrm{Na}\left[\mathrm{S}_{2}-\right.$ $\left.\mathrm{CN}\left(\mathrm{CH}_{2}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Albertsson, Oskarsson, Stahl, Svensson \& Ymén, 1980); $\mathrm{Na}\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Ymén, 1983); and $\mathrm{Na}\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$ (Oskarsson \& Ymén, 1983), to date no information on the bonding and structural properties is available for bisdithiocarbamate complexes, especially for those of type $M_{2}\left[\mathrm{~S}_{2} \mathrm{CNH}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{HNCS}_{2}\right] \cdot n \mathrm{H}_{2} \mathrm{O}$ with central ion $\mathrm{Li}^{+}$, $\mathrm{Na}^{+}, \mathrm{K}^{+}$or $\mathrm{NH}_{4}^{+}$. This paper reports the structure of $\mathrm{Na}_{2}\left[\mathrm{~S}_{2} \mathrm{CNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{HNCS}_{2}\right] .6 \mathrm{H}_{2} \mathrm{O}$.

Experimental. The title compound was prepared by dissolving stoichiometric quantities of $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{2}^{-}$ $\mathrm{NH}_{2}, \mathrm{CS}_{2}$ and NaOH in water. Crystals were obtained by addition of acetone to the solution. Recrystallization from aqueous solution gave colourless plates at

323 K. Found: N, 7.83 ; C, $13 \cdot 24$; H, $4.94 \%$. Calc.: N, $7.69 ; \mathrm{C}, 13 \cdot 19 ; \mathrm{H}, 4.98 \%$. To obtain the intensity data a crystal $0.05 \times 0.1 \times 0.2 \mathrm{~mm}$ was chosen. Density measured by flotation $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}-\mathrm{CHCl}_{3}\right)$. The approximate values of the lattice parameters, calculated from rotation and Weissenberg patterns, were refined on a Syntex $P 2_{1}$ four-circle diffractometer by a least-squares procedure from ten precisely centred reflections using Mo $K \alpha$ radiation. Intensities collected in range $0<$ $2 \theta<50^{\circ}$ yielding 1852 independent reflections, 1308 with $I \geq 2.00 \sigma(I)$, index range $h \pm 7, k \pm 9, l 0 \rightarrow 12$, were considered as observed and used in the structure solution, 118 parameters. All intensities corrected for Lorentz and polarization effects. No corrections for absorption or secondary extinction. Structure solved by heavy-atom method. H atoms located from difference Fourier synthesis. Structure refined to $R=0.038$ and $w R=0.044$ using full-matrix least squares, minimizing function $M=\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ with weights $w=$ $1.291 /\left[\sigma^{2}(F)+0.0006 \mid F_{o}{ }^{2}\right]$. Positions of H atoms were refined with isotropic temperature factors. Heavier atoms refined anisotropically. Max. and min. heights in final difference Fourier synthesis 0.39 and $-0.32 \mathrm{e} \AA^{-3} .(\Delta / \sigma)_{\max }=0.186$. Scattering factors from International Tables for X-ray Crystallography (1974). All calculations carried out on a Siemens 4004/150 computer using the $N R C$ crystallographic programs (Ahmed, 1970) and SHELX76 (Sheldrick, 1976).

Discussion. The final positional parameters for the non- H atoms are given in Table $1^{*}$ and selected distances and angles in Table 2. A view of the structure projected along a is shown in Fig. 1. The crystal structure consists of an infinite polymeric chain of $\mathrm{Na}_{2}\left[\mathrm{~S}_{2} \mathrm{CNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{HNCS}_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ units connected by

[^0]

Fig. 1. View of the structure along a.
four water-molecule bridges at each end of the organic anion. The $\mathrm{Na}^{+}$ions and water molecules are situated along $\mathbf{a}$. In addition to one $S$ atom at 3.066 (1) $\AA$, the $\mathrm{Na}^{+}$ion is coordinated by five water O atoms at distances ranging from 2.382 (3) to 2.445 (2) $\AA$ forming a distorted octahedron. The other $S$ atom of the anion ligand is outside the sodium coordination sphere, being situated 3.801 (1) $\AA$ from the $\mathrm{Na}^{+}$ion, which lies close to the centre of the square plane formed by $\mathrm{O}(1)$, $\mathrm{O}(2), \mathrm{O}(3), \mathrm{O}\left(2^{\mathrm{ii}}\right)(\mathrm{O}-\mathrm{Na}-\mathrm{O}$ angles range from 83.9 to $102 \cdot 4^{\circ}$ ). The deviation of the $\mathrm{Na}^{+}$ion from this plane is 0.028 (1) $\AA$. Each $S$ atom accepts three hydrogen bonds from the $\mathrm{H}_{2} \mathrm{O}$ molecules with $\mathrm{O} \cdots \mathrm{S}$ distances in the range 3.273 (2) to 3.402 (3) $\AA$ and $\mathrm{H} \cdots \mathrm{S}$ distances from 2.40 (5) to 2.69 (4) $\AA$. Along the be diagonal the structure is held together by $\mathrm{O}(3) \cdots \mathrm{H}-\mathrm{N}$ hydrogen bonds, $2 \cdot 30$ (4) $\AA$. The geometry of the organic ligand in the title compound may be compared with the corresponding parts in $\mathrm{Na}\left[\mathrm{S}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Albertsson et al., 1980; Ymén, 1982), $\mathrm{Na}\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$ (Oskarsson \& Ymén, 1983) and $\mathrm{Na}\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{C}_{3}-\right.\right.$ $\left.\left.\mathrm{H}_{7}\right)_{2}\right] .5 \mathrm{H}_{2} \mathrm{O}$ (Ymen, 1983). The difference in length between the $S(1)-C(1)$ and $S(2)-C(1)$ bonds, $3 \cdot 3 \tau$, is only possibly significant in spite of the fact that $S(1)$ is within the sodium coordination sphere and $S(2)$ is not. This is consistent with the ionic character of the $\mathrm{Na}-\mathrm{S}(1)$ interaction. A typical feature of the compounds with ionic metal-ligand interactions is a larger ligand bite angle $S-C-S\left(120-122^{\circ}\right)$ than in the dithiocarbamates of $d$-group metals. For Na dithio-
carbamates this ligand bite angle decreases very significantly as the substituents $R_{2}$ in $-\mathrm{S}_{2} \mathrm{CN} R_{2}$ become bulkier (Ymén, 1983). This was interpreted as the result of $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ intramolecular steric interactions between the substituents and the $S$ atoms. $S(1)$ and $S(2)$ are pushed closer together the more bulky the substituents are. In the title compound the $\mathrm{S}(1)-\mathrm{C}-\mathrm{S}(2)$ angle [122.2 (2) ${ }^{\circ}$ ] is similar to that found in $\mathrm{Na}\left[\mathrm{S}_{2} \mathrm{CN}\right.$ $\left(\mathrm{CH}_{2}\right)_{4} \mathrm{~J} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. The high degree of $\pi$ conjugation in the $\mathrm{S}_{2} \mathrm{CNHC}$ ligand fragment is reflected in the nearplanarity of this fragment, the small (but significant) deviations from planarity being indicative of a small twist $\left(2^{\circ}\right)$ about the $C(1)-N$ bond. $C(2)$ and $H(N)$ lie on opposite sides of the $\mathrm{S}_{2} \mathrm{CN}$ plane at -0.037 (3) and 0.055 (7) $\AA$, respectively.

## References

Ahmed, F. R. (1970). NRC Crystallographic Programs. National Research Council of Canada, Ottawa, Canada.
Albertsson, J., Oskarsson, A.., Stahl, K., Svensson, C. \& Ymén, I. (1980). Acta Cryst. B36, 3072-3078.
Colapietro, M., Domenicano, A. \& Vaciago, A. (1968). Chem. Commun. pp. 572-573.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Oskarsson, Å. \& Ymén, I. (1983). Acta Cryst. C 39, 66-68.
Sheldrick, G. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Ymén, I. (1982). Acta Cryst. B38, 2671-2674.
Ymén, I. (1983). Acta Cryst. C39, 874-877.

# Structure of Polymeric Pyridinium Pentachlorodicadmate(II)* $\dagger$ 

By Chin Hsuan Wei<br>Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 27 March 1987; accepted 8 June 1987)


#### Abstract

C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} . \mathrm{Cd}_{2} \mathrm{Cl}_{5}^{-}\right]_{n}, M_{r}=482 \cdot 175 n\), orthorhombic, Pmmn, $a=15.2175$ (6), $b=3.7897$ (2), $c$ $=10.3138(4) \AA, \quad V=594.75(5) \AA^{3}, \quad Z=2, \quad D_{x}=$ $2.691 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda\left(\mathrm{CuK} \alpha_{1}\right)=1.54056 \AA, \quad \mu=$ $396.8 \mathrm{~cm}^{-1}, F(000)=448, T=296(1) \mathrm{K}$. Final $R(F)$ $=0.050$ for 626 counter data with $F_{o}^{2} \geq 2 \sigma\left(F_{o}^{2}\right)$. Cd atoms are on crystallographic mirror planes at $y=0$ or $\frac{1}{2} ; \mathrm{Cl}^{-}$ions form distorted octahedra about them. These

^[ * Research supported by the Office of Health and Environmental Research, US Department of Energy, under contract DE-AC0584OR21400 with the Martin Marietta Energy Systems, Inc. $\dagger$ Presented in part as Paper PC10, American Crystallographic Association Meeting, Austin, Texas, 15-20 March 1987. ]


0108-2701/87/122295-04\$01.50
octahedra share edges in the $\mathbf{b}$ direction and corners in the a direction to give a two-dimensional polymeric network. The $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$ions are each hydrogen bonded to a neighboring Cl atom with the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}^{-}$ linkages parallel to the $z$ direction. The four independent $\mathrm{Cd}-\mathrm{Cl}$ distances are 2.561 (1), $2.585(2)$, 2.668 (2) and 2.723 (1) $\AA$ and $\mathrm{Cl}-\mathrm{Cd}-\mathrm{Cl}$ angles range from 83.38 (6) to $94.48(10)^{\circ}$ for cis-related Cl atoms.

Introduction. Among transition-metal-nucleotide complexes that have been structurally characterized, two of them are those with uridine monophosphate (UMP): $\left[\mathrm{Co}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(5^{\prime}-\mathrm{UMP}\right)_{2}\right]_{n}$ (Cartwright, Goodgame, Jeeves (c) 1987 International Union of Crystallography


[^0]:    *Lists of anisotropic thermal parameters for the non-H atoms, isotropic thermal parameters and coordinates of the H atoms, least-squares planes and deviations from them and lists of structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44224 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

